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ABSTRACT

~—

This thesis describes the development of a new method
for controlling the error in model following control systems.
The treatment is for first order, linear or nonlinear,
time varying or time invariant systems with additive
(linear) control. The errors controlled are assumed to
have arisen from external disturbances or from differences
in the initial conditions of the plant and the model.

The theory introduced is called constant error model
following control. This paper describes the theory as an
outgrowth of attempts to control a plant by feedback of an
error between the plant and model.with the error specified
to be constant. From this, it is shown that a model may be
followed with arbitrary error. The central result is

that, given some error, one can find another model (control

model) which, if followed with this arbitrary error, will

guide the plant state trajectory back to that of the model.
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I. INTRODUCTION

The theories presented in this thesis were developed
in the course of researching control techniques for use in
aircraft departure prevention. The aim was to apply model
following control methods to the nonlinear, time varying
and coupled dynamic equations of motion of an aircraft at
critical combinations of angle of attack and angular rates.
When it was seen that a new development in model following
control had evolved from the research, it became the sole
subject of the thesis.

Model following control is concerned with techniques
which cause a physical plant to behave as much like a model
as possible. Motyka [Ref. 1] accomplishes this by solving
the plant state equations for their controls and then
substituting expressions for the model states and state
rates into these equations. That is, assuming that the
plant is defined by the linear, small perturbation constant

coefficient differential equation:

X_ = £, x, + g u (1)

where xp is the state of the plant

up is the control

d
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and that a model is given by the corresponding differential

equation:

It is desired that X, = xp and X, = xp
The plant control which achieves this can be determined by
substituting the desired relationships into the plant

equation:

X_ = f1 X, * g u (3)

And solving for up . The result is an expression for the
plant inputs which make the plant state equal to that of
the model.

Problems with this method arise when equations (1)
and (2) are vector equations with fewer controls than states
to be controlled. Also, if equation (1), which is a
mathematical description of a real, physical plant, fails
to describe that plant accurately, errors may be introduced
into the response of the system. Finally, errors will
occur if the plant and the model do not have the same
initial conditions, or equivalently, in the presence of
external disturbances.

The first two of these three problems are treated by
Moytka (Ref. 1] and Rynaski [Refs. 2 and 3]. They are

beyond the scope of this paper. The theories presented
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herein apply specifically to the problem of reducing the

system error in the third case. The method, called constant

error model following control, is developed and demonstrated.

for nonlinear, time varying, first order, single input-

single output systems with additive (linear) control.
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IT. PROBLEM DESCRIPTION

For the purposes of this discussion, it is assumed
that a plant (physical process) is given, and that it is
completely described by a first order differential equation
with additive control of the form

ble %fl (xp,t)+glup (1)

where xp is the state of the plant
t is the variable time
u is the control input to the plant
£ is (in general) time varying and nonlinear in xp

g, is constant

It is desired that the response of the plant be modified in
some way. This modified response is completely descriped

by the mathematical model

(2)

x_ = fz (xm , t) + g, u

m S

X is the state of the model which has the desired
response

u is the control input to the system which incor-
porates the model and the plant, and

fZ is (in general) time varying and nonlinear in
X, » and £, ¥ £,

g, 1is constant, g, # g

11
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FIGURE 1.
where e
e = lxm - xpl
K, is the adaptive gain applied to
Uk
Uk

ITI. SYSTEM DESCRIPTION

A parallel model following system is chosen:

Xm

is the magnitude of the system error:

is the (additive) modification to the system

control, ug

PARALLEL MODEL FOLLOWING CONTROL SYSTEM

zero unless the plant and model have identical responses

and

e

e

SS

SS

to the same input, since

= 0 implies that

= 0 implies that

Ug

X

12

= 0 implies that

= X

mss pss

u

p

u

e to generate

In this system, the steady-state error (ess) can never be

S
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Since this condition serves no useful purpose unless the
parameters of the plant or model are adjustable, we intro- 1

duce the idea of a constant (non-zero) error.

s

il il
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IV. CONSTANT ERROR MODEL FOLLOWING CONTRCL

A. CONSTANT ERROR

Without changing the system, the error (e) is specified

to be fixed at some arbitrary value (¢):

— 1 X
Mooe L
Us | — *_ese
+ * -
Ue PuanT X
-+
*

7 8y T

FIGURE 2. CONSTANT ERROR MODEL FOLLOWING CONTROL SYSTEM

We wish to determine the gain, K* , which will insure that

this condition, once established, will be maintained as

shown in Figure 3.

“:;’ Xp
Xm

FIGURE 3. PLANT AND MODEL STATE TRAJECTORIES

The state trajectory of the plant follows that of the model

with constant difference e .
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We have defined

by -
e = ]xm xpl (4)
4 - x *[ =
so that ¢ Ixm X5 l constant,
'3 where xp* is the plant output for e = ¢ . Similarly,

denote the value of K which maintains the error constant
at e = ¢ as K* and the resulting control as u¥

We now have

= | - * = - * - *
€ [x, X5 | (xm X, ) sgn (x_ xp )
X sgn (x_ - x_*) - ¢
so x * = 1 m P
P sgn (xm xp )
SEE % = - - *
: or xp X € sgn (xm xp ) (5)
: = = - * - *
and € 0 (xm xp ) sgn (xm xp )
d . " - . - % .
(3? [sgn (xm xp 31 0 since (xm xp ) is assumed .
constant ) )
so X * = x




The ~esult is that, if the plant state is exactly + =
from the model state, we may express ip* and xp* as

functions of X, x and + ¢ . The values of X _, x

m m m m

and ¢ are known for any time and system control because
they have been specified.

Now note from the system description (Figure 2) that

* = %
up uo + oup
x = x
or U up ug (7)
and uk* = Ka* € (8)
Equations (1) and (2) may be solved for up* and u :l
N I C TN
u = (9)
P £1
5( - f (x » t)
s g;
By substituting equations (5) and (6) into equation (9):
X - - - *
. . f1 [(xm € sgn (xm X, )) , t)
u = (11)
P 8

llf U and u, are not additive controls as assume

and if the state equations may be solved for u and wu,_
the results which follow are still valid. P >

16




Here we define

A ;
fl* (xm , € , t ) ™ fl [(xm - € sgn (xm - x *)y, t]
(12)

= *

;_ £, (xp* 0, 8)
X - f * (X ’ € » t)

* = _P 1 m -
SO up g (13)

From equations (7)), (8), (10) and (13):

* = u* = y* -
K* ¢ u u p uS
X f.* (x € t) x - f, (x_, t)
K* e = m 1 m ? ’ - m 2 m (14)
g1 g2
o . Xm - fl* (xm , € , t) &m - fz (xm , t ) (15)
€ g -]

Equation (15) gives us the gain which will insure that,
if xp =X, te initially (Figure 4), the proper control
will be applied to maintain it there if the system is
undisturbed. It is expressed solely in terms of the model
state and state rate, the specified error, and the func-

-* tional relationships which define the plant and model

responses.

e

LAY > PPy
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FIGURE 4. PLANT AND MODEL STATE TRAJECTORIES

The use of K* gain is illustrated in the following

example:

Example 1:
plant.

we have

Linear, first order, time invariant model and

a3

=]
1}

[on

»
=]

+

c
174
—




then u®*=x*-2ax *
p p
us 7 Xm - b *m
u* - u
K*:.—R__..___s_
a €
vy - Y « (v -
_ (xp a xp ) (x b xm)
€
From equations (5) and (6):
. . ) ) * L
- X a [xm € sgn (xm xp )1 X+ b X,
a €
(b - a) x + ac sgn (x_ - x_¥)
or Ka* = L = L P (16)

The system is as shown in Figure 5.

Ws

| b le—
+ Xm
-—r-——bg: §
4=
3

FIGURE 5. CONTROL SCHEMATIC FOR EXAMPLE 1

19
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The system was simulated on the IBM 3033 using the
Continuous System Modeling Program (CSMP). The following

values were used:

a=+20.5 (unstable impulse response)
b=+1.0
e = 0.05 2
xm(O) =0 i
x. (0) = 0.1 |
p( )
g —.—
- LEGENT
8 " v}
<] xp ©
ol
3
4
=2
&)
[ y
8
L4 %.00 0.50 1.00 .  2.00 .80  s.00 3.5 v.00 v. %0 s.00
TIME o
L
FIGURE 5a. SIMULATION RESULTS FOR EXAMPLE 1 ?
2This value of ¢ was chosen so that the error E
following could be shown graphically. The system performs .

similarly for any value of ¢ > 0

N L TR
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The input (us) was a unit step at t =0 . A tinme
history of the system response for the first five seconds is

shown in Figure 5a.

B. STABILITY OF THE SYSTEM USING K*e CONTROL

The question to be answered is: Will the gain K*
satisfactorily control the plant if e # ¢ ?

We require that, in response to an error such that
e # ¢ , the system tend toward e = ¢ . That is, the state

of the plant, xp , should tend toward X+ € (static

stability).

A

Xm, Xm < Xp
. - S )
e ﬁ\'\ft\>x$ Xmt €
A Y
Xm=-€
o«
/
/
/.
xvl e
*9‘(*9
t
.

FIGURE 6. PLANT TRAJECTORIES FOR DECREASING THE ERROR

21
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If e > ¢ , we require & < 0

é = (im - kp) sgn (xm - xp) <0 if e > ¢ (17)

(Again, the Signum function has no derivative since the
plant state trajectory does not cross that of the model.)

We have :’cp* = x (6) so,

é = (ip* - ip) sgn (xm - xp) < 0 if e > ¢ (18)

The two cases are x> X and x_ < x
m ) m p

X, > X = X * < x
m p p

for & < ¢ (19)

These two cases are shown in Figure 6.
From equation (1):
. = *
X f1 (xp , t) + g K* e I
(20)

;X = * * ‘
X f1 (xp , t) + g1 K* ¢

In determining whether % _* < x or %X * > x_ , we
p p p P

know e > ¢ , and we can examine f1 (xp , t) to see if




it e A s A

it increases or decreases with xp

But the sign and

magnitude of K* will be determined by the model being

followed (equation (15)).

From equation (20) we have

X = x * = [fl (xp , t) - fl (xp* , t)] + g1 K* (e - ¢) (21)

P p

From equation (19), with e > ¢ ,

First Case: x_ > x_=> X * < x_=>
- n__ P P P

[fl (xp ,» t) - fl (x * ’ t)] + gl K* (e - e) >0

p

or [fl (xp , t) - fl (xp* , 8)] > -

Likewise,

Second Case: Xm < X =>

[fl (xp ’ t) - fl (xp* ) t)] < -

For any given x_ , x_ , € and

p m
in equations (22a) and (22b) except

g, K* (e - ¢) (22a)

K¥ (e - ¢€) (22b)

gq

1

g1 > all the quantities

K* are determined.

Since we wish our descriptions of the plant and the model

to be arbitrary, we cannot assure that equations (22a) and

(22b) will hold for all cases.




This is illustrated by Example 1, where

Using equations (22a) and (22b):

X > X requires
m P !

a xp - a xp* > -~ K* (e - ¢€)
a (xp - xp*) > -~ K*¥ (e -~ €)
- * = - -
For X, > xp , (xp xp ) (e £)

since (e - ¢) > 0 , we require
- a> - K*¥ or a < K*

Similarly, for X, < xp we require

a < - K*

Thus, if a < 0 , we require |a| < [K¥*|

- - *
(b a) X, * 2 ¢ sgn (xm x_*)

a] < _

using equation (15). This places an unacceptable restric-
tion on the choice of model and ¢ . If a > 0

the other of the inequalities is not satisfied.

24
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Using the values given in Example 1, the value of K*¥
at t = 1.5 seconds was found (from the simulation) to be
- 12.2-. Here, a = 0.5, a 1is not less than K#*¥ and
we can expect divergence if X, > xp
A negative step disturbance of magnitude 0.3 was super-
imposed on x at t = 1.5 seconds in the simulation. The

p
resulting divergence is shown in Figure 7.

v o BT SmE pedeny

. N EPSTLan" < g.ic.’ NEE bfé’mﬁsolgo.sy AT T = 1.50 LEGEND
s s XM fua ]
o o ¢4 C
I

g [
o1 o
g s
o1 o
2 2
[y al
a »
4 .
a H]
L . v
0.00 0.20 a.80 0.80 o 1.00 1.20 1.40 1.0 1.80 2.00

FIGURE 7. DIVERGENCE RESULTING FROM K*e CONTROL




C. STABILIZING THE SYSTEM

Neutral static stability (& = 0) can be established by

taking e = e. That is, if an error (e) 1is present in

the system, we take that error as our new e . If the

error changes, we change ¢ . Equation (15) becomes
- X, - le (xm , e, t) ] X, - fz (xm , t)
N e g e g,

(23)

where the subscript N denotes a neutrally stable system,

and

e

le (xm s e, t) f1 (XpN , t)
X = Xx_ - e sgn (x_ - x.)
PN m m P
Since Upy = KN e
) Xm le (xm , € , t) Xm - fz (xm , t)
u - -
KN g g

At this point we are no longer computing a gain, but
directly synthesizing a control modification using
Xm » X 5 © and the descriptions of plant and model
dynamics.

Equation (24) gives the control which, when added to
the system control, will cause the plant to follow the

model with constant error. If the error present in the

26
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system should change, the plant will follow the model

with the new error held constant.

way of Example 1.

0.0) 1,00

0,63

.13

.3 P

Equation (16) becomes

= - + -
Uy (b a) X a e sgn (xm xp)
L

XDOT (PLANT) = 0.5xX (PLANT) +y (P| ENT

XBET(MBD*L1=-1Jn§(MGUE JeisvETEm)
o EER L Eala BOE, Lol
. (%] i1 v
<) PLgNT goThuT DI§?CQ:§5 1 8 20T T=1.0 ¢ 2.0 LEGEND
=. /_-—."._- .
& / xP
£
o
=2
.4
; /,‘-‘—"
<
s
!T‘o.nn 6.% 0.80 0.90 Tzroms t.%0 1.80 2.10 FAT) 2.7 8.0

FIGURE 8.

CONSTANT ERROR CONTROL SIMULATION
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The simulation was run with xp being disturbed by
2.

step inputs at t = 1.0 and t = 0 seconds as sihown

in Figure 8.

Note that the error is constant even with e = 0
This does not alter the discussion following Figure 1
regarding steady state zero error, because we are no
longer calculating a gain as shown in Figure 1. The present

form of the system is shown in Figure 9.

Xm
Us MODEL

7. +
Ai.lbzlfy —_
L/ -

U ConTROL
[ SINTHESS

.‘( “/
Xp

P pLANT —>

FIGURE 9. FORM OF THE SYSTEM WITH CONTROL SYNTHESIS

At this point, if

A. The physical pant is perfectly described by the
plant equation, and

B. The plant and the model have the same initial

conditions (e(0) = 0) , and

28
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C. There are no external disturbances (or if the mean
disturbance is zero), then the control defined by equation

(24) will yield zero error (or zero mean error).

D. ERROR AND ERROR RATE CONTROL

If an error exists in the system, it is desired that
it be reduced to zero in a controlled manner. Figure 10
shows a system with initial error. The trajectory of xp

with constant error (equation (24)) is shown, as well as

a desired response to this condition (dashed line).

RGN

t
- >

FIGURE 10. CONSTANT.ERROR AND DESIRED RESPONSE
TRAJECTORIES OF THE PLANT
The desired response may be obtained by observing that
the plant may be made to follow any model with constant

error. That is, if we can find another model (to be called
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the control model) which, if followed with constant error,

will cause the plant state to return to the model
trajectory, the desired response is obtained.

The trajectory of the control model is shown in

Figure 11.
X A X
~P ¥m
an<
Cemo
SN I
/
X“., \s- __/
Yemo
t
—>
FIGURE 11. CONTROL MODEL TRAJECTORY
The notations ®n and e., Trepresent the errors

between the plant and the model, and between the plant and

the control model, respectively. Note that € n is held

constant, and that the trajectory of X., ¢causes e, to
diminish.
From Figure 10 the nature of Xem is seen: If en is

0 , then Xem is the same as 2 (except, perhaps, for

initial conditions). If e is non-zero, then icm

differs from im by an amount proportional to e

m*




A control model which achieves the desired response may

be written:

Xom = Xm A (em) sgn (xm - xp) (26)
where A (em) > 0 and
A (em) =0 if
en 0

X < X if X > X and

X, > X if X, < X, as required.

From equation (2):

xcm = f2 (xm , t) + gy ug * A (em) sgn ( X " xp) (27)
SO
icm - f2 (xm , t) - A (em) sgn (xm - xp)
u = (28)
S g,




The additive control input necessary to follow the

control model with constant error is then (from

equation (24)):

u. = Xem = fin Xem > Ccp o V)
K g
(29)
] Xem - f2 (xm , £) - A (em) sgn (xm - xp)

g2

In equation (29) le (xcm s €cp t) 1is defined as

the function evaluated at

xp = X.p, © €.p S&n (Xcm - xp)

This expression may be shown to be independent of Xem

by observing the six possible relationships between

xp » X and Xem and writing the expression for €em
for each:

Xp 7 X 7 Xem ®m T *m " *em * Cm

Xp 7 Xem 7 *n ®em " *m T *em ¥ Cn

X, > xp > Xen €em -~ Xn T €m T~ ©m

X > X > X e = - X + + e

X
m cm 1 cm m cm m




From which, for all cases

n = Xcp SER (xcm - xp) - X sgn (Xcm - xp)
]
+ e sgn (xm - xp) sgn (xcm - xp)
then
€.p 581 (me - xp) = Xep T Xp t o€, Sen (xm - xp)
SO Xem ~ ©em ST (xcm - xp) = x - e sgn (xm - xp)

The expression for uy is then

u. = —em NG I B
K g1
Xep - fz (xm , t) - A (em) sgn (xm - xp)

g2

where le (xm > t) 1is the function fl evaluated

at xp = X, - €, sgn (xm - xp)

In equation (30), if g, ° 8, then Uy does not
depend on X.m
In any case, it is simpler at this point to replace

the last term in equation (30) by ug and calculate

directly up =ug +u , or

(30)




boud i

le (xm , e, t)

X
_ —cm m

P g,

The selection of the function A (em) appears to be

(31)

arbitrary with unconstrained control. The plant following

the control model in exactly the desired manner in each
simulation run. The form of A (em) chosen for most
simulations was A (em) = [exp (w . em) - 1] , where w
was selected to vary the speed of the response.

The application of this form of error control is

illustrated by continuing Example 1:

P P P
a#b
- b Xp *oug
From equation (26), icm = b Cp * Ug * A (em) sgn (xm - xp)
X a (x_ - e sgn (x_ - x.))
From equation (30), wu, = cm m n m__°p
) Xem ~ b Xp - A (em) sgn (xm - %p)

1




The expression for

=

selecting A (em)

The problem was simulated with the values

and b

- 1.0

Uk

+ A

—

- - e
a (xm

[exp (3 em) - 1]

as before.

simplifies to

(ep) sgn (x, - xp)

m S80 (xp - x.))

=

a + 0.5,

The plant, model, and control

model had the same initi~l conditions (zero). A step
disturbance was imposed on the plant at t = 0.5 second.
The response is shown in Figure 12:
T(PLANT) =0.SxX (PLANT) +U [PLANT) °

¥ ET(HEDEL!=gl?;X(Hag'L!:UISYSTéHJ
LN e F R S xTEM-ZBST LY, -
= - 5 1.0 DISTURBANCE AT T=8.5 (STE™ LEGEND
ﬂ_ E XM jul
= - P o
] 8
-1 -
e e
o &1
- I
r S
N 1
8 8
] o
8 %
.
3
Ay ‘0.0 0.%0 1.0 1.9 “?m: 7.% s.00 3.% .00 ) .00

FIGURE 12. SIMULATION USING CONSTANT ERROR

MODEL FOLLOWING CONTROL




The system at this point is most simply described
from equation (31) as a feedforward control synthesizer with

error feedback, as shown in Figure 13:

Xem ¥p
(V PP T W
-—‘-—’ ModeL ® a\ N ——-——-D' PLANT »
- + -
em

Dl

FIGURE 13. CONTROL SYSTEM CONFIGURATION WITH )
CONSTANT ERROR MODEL FOLLOWING CONTROL
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V. SUMMARY

The method of constant error model following control

is summarized as follows:

Given the plant described by

%
[

= fl (Xp , t) + gl up
and the model
X_ = f2 (x. , t) + g, u

m S

Define the control model

Xem = X * A (em) sgn (xm - xp)

Select A (em) such that
A (em) >0
A (0) =0

a (eml) > 4 (emz) if ®nl ” ®m2

Solve equation (1) for u

(1)

(2)

(26)




-

In equation (32) substitute

f1 (x_ , t) = le (xm , e, t)

P m
where
le (xm » € o t) = f1 (xp , t) with
xp = Xy - e, sgn (xm ~ xp)
The result
u - Xem ~ iy ;jm » &p > V) (31)

Is the plant input which makes the plant states equal to
those of the model, and restores this condition in the

presence of error.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. It is concluded that constant error model following
control achieves the desired goal of error control for the
systems described in this paper. It offers the advantage
of perceptual simplicity in that the designer can visualize
exactly the effect of his control method on the system
response. It affords flexibility in that the choice of the
restoring function A (em) is arbitrary within the few
constraints mentioned.
B. The following areas of future research are suggested:

1. Development of the theory with application to higher
order systems with non-additive controls.

2. Investigation of the response of systems in which
the physical plant is not accurately described by the plant
equations.

3. Application of the theory to practical problems.




APPENDIX A: EXAMPLE OF APPLICATION OF THE METHOD TG
A FIRST ORDER NONLINEAR SYSTzZM WITH
TIME VARYING COEFFICIENTS

1. Assume the Plant is given by

. 2
= t 2 A
Xp Yp + 2up (Al)
and the model by
- 1/2
Xm (t xm) *ug (A2)
define |
icm = Xm + A (em) sgn (xm - xp) (A3)
then
. 2
X - tx
up = "E“'ir‘Jl‘ (Ad)
into (AS) substitute
f . _ s
' xp = X.n (AS) ]
xp = X, - e, sgn (xm - xp) (A6) _%
ke
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then

. 2 .
- - (tmel/ *ug +Afe ) sgn (me- x) -t (x, - e, sgn (X, - xp)
P

(A7)
The system was simulated using the Continuous System
Modeling Program (CSMP) on the IBM-3033. Time histories
of the response following a disturbance at t = 0.5
second are shown in Figures Al through A8. The system
control input is a unit step at t = 0 in all cases.
Shown also are the plant control; generated in each case.

The four cases were the same except for the choice of

ACep,)

A. A(em) = Sem (Figures Al and A2)
A(em) = exp (em) - 1 (Figures A3 and A4)
A(em) = exp (Zem) - 1 (Figures AS and A6)
A(em) = exp (Sem) - 1 (Figures A7 and AS8)

U e codaiial .

PR
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